• 时事博文
  • 文化时尚
  • 潮流娱乐
  • 生活常识
  • 健康生活
  • 旅游攻略
  • 体育风云
  • 财经博文
  • 汽车频道
  • 科技
  • 游戏
  • 女人
  • 互联网
  • 军事博览
  • 个性推荐
  • 当前位置: 精彩博文网 > 互联网 > 正文

    【中考冲刺:观察、归纳型问题(基础)(1)】中考数学2019

    时间:2020-07-25 11:06:52 来源:精彩博文网 本文已影响 精彩博文网手机站

    中考冲刺:观察、归纳型问题(基础)
    一、选择题
    1. 用边长为1的正方形覆盖3×3的正方形网格,最多覆盖边长为1的正方形网格(覆盖一部分就算覆盖)的个数 是(  )
                        
    A.2   B.4   C.5   D.6
    2.求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此,2S-S=22013-1.仿照以上推理,计算出1+5+52+53+…+52012的值为(  )
    A.52012-1   B.52013-1
     C.    D. 
    3.(2016•冷水江市三模)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时,点P的坐标是(  )
                    
    A.(2016,0)    B.(2017,1)
      C.(2017,﹣1)
      D.(2018,0)

    二、填空题
    4.(2015•盘锦四模)已知,如图,△OBC中是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC=,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC1,得到△OB2C2,…,如此继续下去,得到△OB2015C2015,则点C2015的坐标是______.
                      
    5.(2016•天门)如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等边三角形,且点A1,A3,A5,A7,A9的坐标分别为A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依据图形所反映的规律,则A100的坐标为______.
                    
    6. 如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…Mn分别为边B1B2,B2B3,B3B4,…,BnBn+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△BnCnMn的面积为Sn,则Sn=___________.(用含n的式子表示)
              
    三、解答题
    7.观察下列等式:
      
    ……
    请解答下列问题:
      (1)按以上规律列出第5个等式:a5=______=______;

      (2)用含有n的代数式表示第n个等式:an=______=______(n为正整数);

      (3)求a1+a2+a3+a4+…+a100的值.
    8. 如下表所示,是按一定规律排列的方程组和它的解的对应关系,若方程组自左至右依次记作方程组1、方程组2、方程组3、…、方程组n.
    (1)将方程组1的解填入表中.
          
    (2)请依据方程组和它的解的变化规律,将方程组n和它的解直接填入表中;

       
    9. 如图所示,是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图①倒置后与原图拼成图②的形状,这样我们可以算出图①中所有圆圈的个数为….  
        
    如果图①中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图③的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边的这个圆圈中的数是________;
    (2)我们自上往下,在每个圆圈中都按图④的方式填上一串连续的整数-23,-22,-21,…,求图④中所有圆圈中各数的绝对值之和.
    10. (余杭区期中)如图,将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去.
        
    (1)填表 次数 1 2 3 4 5 个数 4 7 ______ ______ ______
    (2)如果剪了n次,共剪出多少个小正方形?
    (3)能否经过若干次分割后共得到2014片纸片?若能,请直接写出相应的次数,若不能,请说明理由.
    (4)若将所给的正方形纸片剪成若干个小正方形(其大小可以不一样),那么你认为可以将它剪成六个小正方形吗?八个小正方形呢?如果可以,请在下图中画出剪割线的示意图;
    如果不可以,请简单说明理由.   答案与解析 【答案与解析】  一、选择题
    1.【答案】D;

       【解析】6个,把边长为1的小正方形的对角线与3乘3网格中的中间正方形任意边重合(其中小正方形的对角
         线中点与3乘3网格中的中间正方形边上的中点重合),因为对角线的长为>1,
         所以这时有6个正方形网格被覆盖.  
    2.【答案】C;

       【解析】设S=1+5+52+53+…+52 012,则5S=5+52+53+54+…+52 013.
         因此,5S-S=52 013-1,S=.
    3.【答案】B;

       【解析】以时间为点P的下标.
         观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),
         P5(5,1),…,
         ∴P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).
         ∵2017=504×4+1,
         ∴第2017秒时,点P的坐标为(2017,1).
    二、填空题
    4.【答案】(22016,0).
     【解析】
         ∵∠OBC=90°,OB=1,BC=,
         ∵将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,
         ∴OC1=2OC=2×2=4=22,
         OC2=2OC1=2×4=8=23,
         OC3=2OC2=2×8=16=24,
         …,
         OCn=2n+1,
         ∴OC2015=22016,
         ∵2015÷6=335…5,
         ∴点C2015与点C5在同一射线上,在x轴正半轴,坐标为(22016,0).
         故答案为:(22016,0).
    5.【答案】45.
     【解析】观察,发现规律:A2(2,),A4(,﹣),A6(2,2),A8(,﹣),…,
         ∴A4n+2(2,n+),A4n+4(,﹣)(n为自然数),
         ∵100=4×24+4,
         ∴A100的坐标为(,﹣).
         故答案为:(,﹣).
    6.【答案】.
     【解析】∵n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…Mn分别为边B1B2,B2B3,
         B3B4,…,
         BnBn+1的中点,
         ∴S1=×B1C1×B1M1=×1×=,
         S△B1C1M2=×B1C1×B1M2=×1×=,
         S△B1C1M3=×B1C1×B1M3=×1×=,
         S△B1C1M4=×B1C1×B1M4=×1×=,
         S△B1C1Mn=×B1C1×B1Mn=×1×=,
         ∵BnCn∥B1C1,
         ∴△BnCnMn∽△B1C1Mn,
         ∴S△BnCnMn:S△B1C1Mn=()2=()2,
         即Sn:=,
         ∴Sn=.
         故答案为:.
    三、解答题
    7.【答案与解析】
    解:根据观察知,答案分别为:
        
    8.【答案与解析】

     显然该方程组不符合(2)中的规律.
    9.【答案与解析】
    解:(1)67.
      (2)图④中所有圆圈中共有1+2+3+…+12=个数,

     其中23个负数,1个0,54个正数,

     ∴图④中所有圆圈中各数的绝对值之和

     =|-23|+|-22|+…+|-1|+0+1+2+…+54

     =(1+2+3+…+23)+(1+2+3+…+54)

     =276+1485=1761.
    10.【答案与解析】
    解:(1)答案如下:
    次数 1 2 3 4 5 个数 4 7 10 13 16
      (2)如果剪了n次,共剪出4+3(n﹣1)=3n+1个小正方形;

        (3)3n+1=2014
      解得n=671,
      经过671次分割后共得到2014片纸片;

        (4)可以将它剪成六个小正方形,八个小正方形,如图
                 

    • 时事博文
    • 文化时尚
    • 潮流娱乐
    • 科技
    • 游戏
    • 女人
    • 个性推荐